• Просмотров: 4876
Эта задача решается путем интегрирования дифференциальных уравнений движения, получаемых из основного уравнения динамики материальной точки (2.14), в котором сила F есть сила притяжения. Мы не будем интегрировать эти уравнения, так как с этим учащийся познакомится в курсах теоретической астрономии и небесной механики Остановимся лишь на результатах решений. Если неподвижная масса М, сосредоточенная в точке С, стала притягивать к себе в некоторый момент материальную точку т с силой, обратно пропорциональной квадрату расстояния, то ускорение точки т будет направлено по прямой тС, а ее дальнейшее движение будет зависеть от расстояния и от величины и направления скорости v0, которые она имела в начальный момент (в момент начала действия притяжения массой М). Если скорость v0 > 0, но не превосходит некоторого предела vc, то точка т будет двигаться по эллипсу, в одном из фокусов которого будет находиться точка С (30). Плоскость эллипса будет проходить через точки С, т и направление скорости v0. Форма и размеры эллипса будут различны, смотря по величине скорости v0. При малых v0 эллипс будет сильно сжатым, его большая ось будет лишь немного больше, чем Cm, и точка С будет находиться в фокусе, далеком от m. Если скорость v0 будет близка к скорости vc, но меньше ее, то эксцентриситет эллипса будет мал, его большая полуось будет лишь немного меньше, чем Cm, точка С приблизится к центру эллипса, но останется в фокусе, далеком от т. Если начальная скорость v0 = vc и будет направлена перпендикулярно к линии Cm, то точка m будет двигаться по кругу радиуса Сm. Если v0 > vc, но не превосходит некоторого предела vп = vc, то точка т будет двигаться по эллипсу, но точка С при этом будет находиться в фокусе, близком к m, а большая ось эллипса будет тем больше, чем ближе v0 к vп. Если v0 = vп = vc, то точка т будет двигаться по параболе, обе ветви которой уходят в бесконечность, приближаясь к направлению, параллельному оси Ст. По мере того как точка т будет удаляться от тела М, ее скорость будет стремиться к нулю. Если v0 > vп, то точка т будет двигаться по гиперболе, ветви которой уходят в бесконечность и, при очень большой начальной скорости, приближаются к направлению, перпендикулярному к оси Ст. По мере того как точка т будет удаляться по гиперболе, ее скорость будет стремиться к некоторой постоянной величине. Наконец, в предельных случаях, когда v0 = ¥, точка т будет двигаться по прямой тb, а когда v0 = 0, то по прямой тС. Скорость v точки т на любом расстоянии r от точки С получается из формулы (2.18) где а — большая полуось эллипса. Эта формула называется интегралом энергии. Если точка m движется по кругу, т. е. r = а, то из уравнения (2.18) следует (2.19) а если точка m движется по параболе, то а = ¥ и (2.20) Скорость vc называется круговой скоростью, а vп — параболической скоростью. Скорость эллиптического движения vэ заключена в пределах 0 < vэ < vп, а гиперболическая скорость vr > vп. Гиперболическая орбита определяется теми же шестью элементами, что и эллиптическая (см. § 41), только вместо большой полуоси а = ¥ дается перигельное расстояние q. Параболическая орбита определяется пятью элементами: i, <, w, t0 и q, так как для параболы а = ¥ и е = 1.

Добавить комментарий

Ваши комментарии не должны содержать призывов к насилию, разжиганию межнациональной розни и экстремизму, оскорблений, нецензурной лексики, а также сообщений рекламного характера. Все комментарии, не отвечающие этим требованиям, будут модернизироваться или удаляться.
Войдите через социальные сети:
             
или заполните:

Самое читаемое

  • Изображение по умолчанию

    МППСС-72: Коментарии: часть B

    Часть В. Правила плавания и маневрирования Учитывая, что Правила, касающиеся плавания и маневрирования судов, являются наиболее важными для предупреждения столкновений судов в море, они в МППСС-72…

Новости

RSS поток Podlodka.info

В этот день

Сегодня нет мероприятий!
Rambler's Top100