Одновременно с ростом температуры в более глубоких слоях Солнца должно возрастать давление, определяемое весом всех вышележащих слоев. Следовательно, плотность также будет увеличиваться. В каждой внутренней точке Солнца должно выполняться так называемое условие гидростатического равнове сия, означающее, что разность давлений, испытываемых
каким-либо элементарным слоем (например, АВ на 129, а), должна уравновешиваться гравитационным притяжением всех более глубоких слоев. Если давление на верхней границе слоя (A) обозначить через P1, а на нижней — через Р2, то равновесие будет иметь место при условии, что P2 ¾ P1 = r gH, (9.1) где r — средняя плотность слоя АВ, H — его толщина, a g — соответствующее значение ускорения силы тяжести. Среднюю плотность r можно положить равной среднему арифметическому от значений плотности r 1 и r 2 на верхней и нижней границах слоя АВ: (9.2) Используя уравнение газового состояния (7.9), получим (9.3) Подставляя это значение в формулу (9.1), имеем (9.4) Выражение имеет размерность длины и обладает важным физическим смыслом: если температура слоя постоянна, а толщина его составляет (9.5) то давление и плотность в пределах этого слоя меняется приблизительно в три раза. Действительно, подставляя (9.5) в (9.4), получаем Р2 = 3P1. (9.6) Величина Н называется шкалой высоты, так как она показывает, на каком расстоянии происходит заметное изменение плотности. При T = 10 000ё (m = ½ (ионизованный водород) и g = 2,7×104 см/сек2, что примерно соответствует условиям в наружных слоях Солнца, Н = 6×107 см, т. е. рост плотности в три раза происходит при продвижении вглубь на расстояние 600 км. Глубже температура растет, и возрастание плотности замедляется. Некоторое представление об условиях в недрах Солнца можно получить, если предположить что вещество в нем распределено равномерно. Очевидно, что свойства такого «однородного» Солнца должны быть близки к реальному случаю в средней точке, на глубине половины радиуса. При равномерном распределении масс плотность всюду равна уже известному нам среднему значению Давление в средней точке равно весу радиального столбика вещества сечением 1 см2 и высотой RЅ/2 (см. 129, 6), т. е. (9.7) В средней точке ускорение силы тяжести g, очевидно, равно (9.8) так как в сфере радиусом RЅ/2 при однородном распределении масс заключена 1/8 часть массы всего Солнца. Следовательно, давление в средней точке Солнца равно (9.9) Зная давление и плотность, легко найти температуру Т из уравнения газового состояния: (9.10) Таким образом, мы получили следующие значения характеристик физических свойств «однородного Солнца» на глубине, равной половине радиуса RЅ/2: r = 1,4 г/см2 (1,3 г/см2), Р = 6,6×1014 дин/см2 (6,1×1014 дин/см2), T = 2 800 000ё (3 400 000ё). В скобках приведены те же величины, рассчитанные точными методами, учитывающими неоднородное распределение масс в Солнце. Таким образом, для средней точки предположение о равномерном распределении масс приводит к правдоподобным результатам. В центре Солнца давление, плотность и температура должны быть еще больше. В табл. 5 приведена так называемая модель внутреннего строения Солнца, т. е. зависимость его физических свойств от глубины. Таблица 5 Модель внутреннего строения Солнца Расстояние от центраТемператураДавление Плотность R/RQT (ёK)P (дин/см2)r (г/см3) 01,5 є1072,2є1017150 0,21074,6є101636 0,53,4 є1066,1є10141,3 0,81,3 є1066,2є10120,035 0,9810510100,001 Из табл. 5 видно, что в недрах Солнца температура превышает 10 миллионов градусов, а давление — сотни миллиардов атмосфер (1 атм = 103 дин/см2). В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку при этом плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций. В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на 130, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопа Не3. Эта реакция называется протон-протонной. Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла. Исключительно важным является то обстоятельство, что масса ядра гелия почти на 1% меньше массы четырех протонов. Эта кажущаяся потеря массы называется дефектом массы и является причиной выделения в результате ядерных реакций большого количества энергии, так как согласно формуле Эйнштейна энергия, которая связана с массой т, равна Е = т× с2 Описанные ядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство. Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около
0,2−0,3 радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 миллионов градусов, а давление ниже 10 миллиардов атмосфер. В этих условиях ядерные реакции происходить совсем не могут. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде
гамма-квантов, которые поглощаются и переизлучаются отдельными атомами. Существенно, что вместо каждого поглощенного кванта большой энергии атомы, как правило, излучают несколько квантов меньших энергий. Происходит это по следующей причине. Поглощая, атом ионизуется или сильно возбуждается и приобретает способность излучать. Однако возвращение электрона на исходный энергетический уровень происходит не сразу, а через промежуточные состояния, при переходах между которыми выделяются кванты меньших энергий. В результате этого происходит как бы «дробление» жестких квантов на менее энергичные. Поэтому вместо
гамма-лучей излучаются рентгеновские, вместо рентгеновских — ультрафиолетовые, которые в свою очередь уже в наружных слоях дробятся на кванты видимых и тепловых лучей, окончательно излучаемых Солнцем. Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 rЅ от центра Солнца. Выше этого уровня в переносе энергии начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией. Наконец, самые внешние слои Солнца, излучение которых можно наблюдать, называются солнечной атмосферой; в основном она состоит из трех слоев, называемых фотосферой, хромосферой и короной. Они будут рассмотрены в следующих параграфах.
Добавить комментарий