• Просмотров: 50063

Содержание

 1. Общие сведения об эхолотах

С проблемой измерения глубин под килем корабля человек столкнулся во время первых же плаваний. Это требовалось морякам не только для того, чтобы обезопасить корабль от посадки на мель, но и для определения своего места по рельефу дна, а также для уточнения навигационных карт. Первым инструментом для замера глубины под килем служило весло или шест с нанесенными на нем делениями, называемый футштоком (от немецкого – рейка с делениями). На судах Древнего Египта, совершавших плавание по Нилу, для измерения глубин применялся лот. Всё его устройство состояло из груза и лотлиня, к которому он крепился. В лотлинь вплетались отметки – марки мер глубины – саженей и футов. (1 фут = 0,3 метра; 1 сажень = 6 футов = 1,83 метра) Наблюдатель, или лотовый, как его называли становился на нос и забрасывал груз вперед по ходу судна. Когда груз касался дна, а лотлинь принимал вертикальное положение, по марке замечалась глубина под килем. О таком способе измерять глубины вблизи берега упоминал еще в 5 веке до н. э. древнегреческий историк Геродот.
В течение многих веков задачи измерения глубины решались с помощью ручных лотов. Большие глубины измерялись лотами ещё древними греками. Во 2 веке до н.э. грек Посейдон замерил в Средиземном море наибольшую по тем временам глубину – 1832 метра (максимальная глубина – 4480 метров). Мореплаватели той поры отмечали, что если при плавании по Средиземному морю по направлению к Египту глубина под килем судна уменьшается до 100 саженей (183 метра), то до Александрии остался один день пути. Успешно использовали метод уточнения места по глубинам и русские моряки при входе в дальневосточную бухту Золотой Рог в условиях плохой видимости.
С помощью лота усовершенствованного Петром 1 штурман Алексей Пушкарев в 1772−1773 г.г. и горный заседатель Никита Карелин в 1798 г. вполне успешно выполнили промеры озера Байкал, при этом наибольшая глубина была зафиксирована 1238 метров.
 В 1823−1826 г.г. молодой русский физик Э. Х. Ленц во время кругосветного плавания на шлюпе «Предприятие» под командованием О. Е.
Коцебу
проводил глубоководный промер и исследование посредством специальной лебедки с самодвижущимся тормозом. В 1868 г. на корвете «Львица» под командованием капитан-лейтенанта Ф. Н. Кумани проводился глубоководный промер Черного моря, во время которого был испытан электролот, разработанный Э. Х. Шнейдером. Лот опускали на изолированном медном кабеле. При ударе о дно отделяющийся груз замыкал электрическую цепь и включал звонок, что служило сигналом о достижении грузом дна. Однако печальная судьба многих дореволюционных русских открытий и изобретений постигла и эти технические решения. В 1872 г. У. Томсон получил патент на глубоководную промерную лебедку с автоматическим тормозом (Ленца), проволочным лотлинем (Шнейдера) и лотом с самосбрасывающимся грузом (Петра 1) и в 1890−1891 г.г.  экспедиция под руководством И. Б. Шпиндлера при промере Черного моря уже использовала эту так называемую глубомерную машину Томсона.
Попытки использовать лот для измерения больших океанских глубин делались ещё во времена Великих географических открытий, но большей частью они заканчивались неудачно: либо лотлинь обрывался, либо оно оказывался слишком коротким. Кроме того, с увеличением глубины трос становился тяжелее прикрепленного к его концу груза и поэтому было трудно определить момент касания грунта грузом, а, следовательно, замер глубин был неточен. Наряду с этим на измерение больших глубин затрачивалось очень много времени. Так измерение глубины в 3500−4000 метров требовалось затратить не менее 5 часов.
Известны лоты, которые не только измеряли глубины, но и вырабатывали сигналы, предупреждающие мореплавателя об опасности. Так в конце 19 века на кораблях различных стран использовался лот-предостерегатель Джемса, получивший название «подводного часового». Его особенность состояла в том, что на конце линя крепился не просто груз, а металлическое устройство, по конструкции напоминающее бумажного змея. Такой змей буксировался на определенной глубине. Его крепление с линем было устроено таким образом, что при касании грунта натяжение линя ослабевало и змей всплывал, что было сигналом об уменьшении глубины под килем до значений, меньших, чем вытравленная длина линя. Такой лот не только предупреждал об опасности, но и помогал отыскивать нужные глубины, например для установки вех. Использовался он на глубинах до 50 метров при скорости до 15 узлов.
Нужды мореплавания и расширение исследовательских работ в морях и океанах требовали изыскания новых методов и способов, которые обеспечивали бы достаточную точность и непрерывность измерений и не имели бы ограничений по диапазону измеряемых глубин. На помощь ученым и инженерам пришел звук. Идея о возможности измерения расстояния по времени распространения звуковых волн высказана давно. Впервые метод эхолокации был практически подтвержден в 1804 году академиком Я. Д. Захаровым. Совершая один из первых в истории исследовательский полет на воздушном шаре, он крикнул в рупор в сторону земли, получив через 10 секунд эхо, определил по скорости распространения звука в воздухе, что шар находится на высоте 1700 метров. Однако потребовалось более100 лет, чтобы достичь в этом вопросе практических результатов. Только в начале 20 века с появлением простых и мощных излучателей звуковых колебаний и чувствительных приемников метод эхолокации в измерении глубин получил распространение.
Большое значение для создания ультразвуковых эхолотов имели исследования по направленному излучению ультразвука в воде, проведенные русским инженером К. В. Шиловским в 1912 году. На их основе Шиловский совместно с известным французским физиком П. Ланжевеном получил патент: «Описание аппаратов и способов их применения для подачи направленных подводных сигналов и для локации подводных препятствий». В 1913−1920 годах Ланжевен создал и испытал в проливе Ла-Манш и Средиземном море первый ультразвуковой эхолот.
Конечно, он имел довольно отдаленное сходство с современными точными и надежными измерителями глубины. И это понятно. Электричество, электротехника и электроника только начинали развиваться, и нерешенных проблем было много. В то время было ещё не ясно, какую энергию необходимо сообщить этим колебаниям, чтобы они могли достичь дна и вернуться к приемнику; хватит ли чувствительности у приемника, как точно измерить промежуток времени распространения сигнала по трассе излучатель – дно – приемник, в каком виде должна представляться информация о глубине.
Открытие магнитострикционного эффекта позволило создать надежный излучатель акустических колебаний – вибраторы. Суть эффекта заключается в способности отдельных элементов (никеля, железа, кобальта и др.) менять свои линейные размеры при изменении окружающего их магнитного поля. Магнитострикционный эффект используется в излучающих антеннах эхолотов для преобразования колебаний магнитного поля, формируемого в схеме эхолота, в механические. Механические колебания частиц воды устремляются в сторону дна, отражаются и приходят к приемной антенне эхолота. Здесь происходит обратный магнитострикционный эффект – под действием механических колебаний стержень (например из никеля) изменяет свои размеры, что приводит к изменению напряженности магнитного поля, которое затем преобразуется в электрический сигнал. Теперь только остается замерить промежуток времени между посылкой и приходом колебаний и, зная скорость распространения звука в воде, рассчитать глубину под килем корабля.

Добавить комментарий

Ваши комментарии не должны содержать призывов к насилию, разжиганию межнациональной розни и экстремизму, оскорблений, нецензурной лексики, а также сообщений рекламного характера. Все комментарии, не отвечающие этим требованиям, будут модернизироваться или удаляться.
Войдите через социальные сети:
             
или заполните:

Самое читаемое

  • Изображение по умолчанию

    МППСС-72: Коментарии: часть B

    Часть В. Правила плавания и маневрирования Учитывая, что Правила, касающиеся плавания и маневрирования судов, являются наиболее важными для предупреждения столкновений судов в море, они в МППСС-72…

  • Состав изолирующего дыхательного аппарата ИДА-59М

    Изолирующий дыхательный аппарат ИДА-59М

    Устройство ИДА-59М Изолирующий дыхательный аппарат ИДА-59М (рис. 9) предс­тавляет собой автономный дыхательный аппарат регенеративного типа с замкнутым циклом дыхания. Аппарат изолирует органы…

Новости

RSS поток Podlodka.info

В этот день

Сегодня нет мероприятий!
Rambler's Top100